Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes.
نویسندگان
چکیده
Reperfusion of cardiac tissue after an ischemic episode is associated with metabolic and contractile dysfunction, including reduced tension development and activation of the Na+-H+ exchanger (NHE). Oxygen-derived free radicals are key mediators of reperfusion abnormalities, although the cellular mechanisms involved have not been fully defined. In the present study, the effects of free radicals on mitogen-activated protein (MAP) kinase function were investigated using cultured neonatal rat ventricular myocytes. Acute exposure of spontaneously beating myocytes to 50 micromol/L hydrogen peroxide (H2O2) caused a sustained decrease in contraction amplitude (80% of control). MAP kinase activity was measured by in-gel kinase assays and Western blot analysis. Acute exposure to H2O2 (100 micromol/L, 5 minutes) resulted in sustained MAP kinase activation that persisted for 60 minutes. Catalase, but not superoxide dismutase, completely inhibited MAP kinase activation by H2O2. Pretreatment with chelerythrine (10 micromol/L, 45 minutes), a protein kinase C inhibitor, or genistein (75 micromol/L, 45 minutes) or herbimycin A (3 micromol/L, 45 minutes), tyrosine kinase inhibitors, caused significant inhibition of H2O2-stimulated MAP kinase activity (51%, 78%, and 45%, respectively, at 20 minutes). Brief exposure to H2O2 also stimulated NHE activity. This effect was completely abolished by pretreatment with the MAP kinase kinase inhibitor PD 98059 (30 micromol/L, 60 minutes). These results suggest that low doses of H2O2 induce MAP kinase-dependent pathways that regulate NHE activity during reperfusion injury.
منابع مشابه
Protein kinase-mediated regulation of the Na(+)/H(+) exchanger in the rat myocardium by mitogen-activated protein kinase-dependent pathways.
We examined regulation of the Na(+)/H(+) exchanger isoform 1 by phosphorylation in the rat myocardium. We utilized cell extracts from adult rat hearts, adult rat extracts fractionated by fast performance liquid chromatography, and extracts from cultured neonatal cardiac myocytes. The carboxyl-terminal 178 amino acids of the Na(+)/H(+) exchanger were expressed in Escherichia coli fused with glut...
متن کاملSignal-transducing function of Na-K-ATPase is essential for ouabain’s effect on [Ca]i in rat cardiac myocytes
Tian, Jiang, Xiaohua Gong, and Zijian Xie. Signal transducing function of Na-K-ATPase is essential for ouabain’s effect on [Ca]i in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 281: H1899–H1907, 2001.—We showed before that Na-K-ATPase is also a signal transducer in neonatal rat cardiac myocytes. Binding of ouabain to the enzyme activates multiple signal pathways that regulate cell grow...
متن کاملSignal-transducing function of Na+-K+-ATPase is essential for ouabain's effect on [Ca2+]i in rat cardiac myocytes.
We showed before that Na+-K+-ATPase is also a signal transducer in neonatal rat cardiac myocytes. Binding of ouabain to the enzyme activates multiple signal pathways that regulate cell growth. The aims of this work were to extend such studies to adult cardiac myocytes and to determine whether the signal-transducing function of Na+/K+-ATPase regulates the well-known effects of ouabain on intrace...
متن کاملRegulation of sarcolemmal Na(+)/H(+) exchange by hydrogen peroxide in adult rat ventricular myocytes.
OBJECTIVE To characterise the effects of exogenous H(2)O(2) on sarcolemmal Na(+)/H(+) exchanger (NHE) activity and determine the roles of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase C (PKC) in observed effects. METHODS Sarcolemmal H(+) efflux rate (J(H)) was determined by microepifluorescence at a pH(i) of 6.70 in adult rat v...
متن کاملMechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes.
We have previously shown that stretching cardiac myocytes evokes activation of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and 90-kD ribosomal S6 kinase (p90rsk). To clarify the signal transduction pathways from external mechanical stress to nuclear gene expression in stretch-induced cardiac hypertrophy, we have elucidated protein kinase cascade of phosphorylation by exam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 82 10 شماره
صفحات -
تاریخ انتشار 1998